Insights into the mechanism of bovine spermiogenesis based on comparative transcriptomic studies

Author:

Li Xin,Duan Chenying,Li Ruyi,Wang Dong

Abstract

AbstractTo reduce the reproductive loss caused by semen quality and provide theoretical guidance for the eradication of human male infertility, differential analysis of the bovine transcriptome among round spermatids, elongated spermatids, and epididymal sperm was carried out with the reference of the mouse transcriptome, and the homology trends of gene expression to the mouse were also analysed. First, to explore the physiological mechanism of spermiogenesis that profoundly affects semen quality, homological trends of differential genes were compared during spermiogenesis in dairy cattle and mice. Next, the Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction network (PPI network), and bioinformatics analysis uncovered the regulation network of acrosome formation during the transition from round to elongated spermatids. In addition, processes that regulate gene expression during spermiogenesis from elongated spermatid to epididymal sperm, such as ubiquitination, acetylation, deacetylation, glycosylation, and the functional gene ART3 may play an important role during spermiogenesis. Therefore, its localisation in the seminiferous tubule was investigated by immunofluorescent analysis, and its structure and function were also predicted. This study provides important data for revealing the mystery of life during spermiogenesis resulting from acrosome formation, histone replacement, and the fine regulation of gene expression.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. Review: Principles of maximizing bull semen production at genetic centers;Animal,2018

2. Fair, S. , and Lonergan, P. (2018) Review: Understanding the causes of variation in reproductive wastage among bulls. Animal, 1–10

3. Evaluation of male infertility;Journal of the Louisiana State Medical Society Official Organ of the Louisiana State Medical Society,2009

4. Review: Diagnosis and impact of sperm DNA alterations in assisted reproduction;Best Practice & Research Clinical Obstetrics & Gynaecology,2017

5. JUNO protein coated beads: A potential tool to predict bovine sperm fertilizing ability;Theriogenology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3