Author:
Dey Supravat,Tracey Lee,Singh Abhyudai
Abstract
AbstractLiving cells encode diverse biological clocks for circadian timekeeping and formation of rhythmic structures during embryonic development. A key open question is how these clocks synchronize across cells through intercellular coupling mechanisms. To address this question, we leverage the classical motif for genetic clocks the Goodwin oscillator where a gene product inhibits its own synthesis via time-delayed negative feedback. More specifically, we consider an interconnected system of two identical Goodwin oscillators (each operating in a single cell), where state information is conveyed between cells via a signaling pathway whose dynamics is modeled as a first-order system. In essence, the interaction between oscillators is characterized by an intercellular coupling strength and an intercellular time delay that represents the signaling response time. Systematic stability analysis characterizes the parameter regimes that lead to oscillatory dynamics, with high coupling strength found to destroy sustained oscillations. Within the oscillatory parameter regime we find both in-phase and anti-phase oscillations with the former more likely to occur for small intercellular time delays. Finally, we consider the stochastic formulation of the model with low-copy number fluctuations in biomolecular components. Interestingly, stochasticity leads to qualitatively different behaviors where in-phase oscillations are susceptible to the inherent fluctuations but not the anti-phase oscillations. In the context of the segmentation clock, such synchronized in-phase oscillations between cells are critical for the proper generation of repetitive segments during embryo development that eventually leads to the formation of the vertebral column.
Publisher
Cold Spring Harbor Laboratory
Reference43 articles.
1. Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony;Journal of Cell Science,1981
2. Self-Organized Beating and Swimming of Internally Driven Filaments
3. Role of spatial heterogeneity in the collective dynamics of cilia beating in a minimal one-dimensional model;Phys. Rev. E,2018
4. CYANOBACTERIAL CIRCADIAN RHYTHMS
5. Transcriptional architecture of the mammalian circadian clock;Nature Reviews Genetics,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献