Design Principles Underlying Robust Adaptation of Complex Biochemical Networks

Author:

Araujo Robyn P.ORCID,Liotta Lance A.

Abstract

AbstractBiochemical networks are often characterised by tremendous complexity – both in terms of the sheer number of interacting molecules (“nodes”) and in terms of the varied and incompletely understood interactions among these molecules (“interconnections” or “edges”). Strikingly, the vast and intricate networks of interacting proteins that exist within each living cell have the capacity to perform remarkably robustly, and reproducibly, despite significant variations in concentrations of the interacting components from one cell to the next, and despite mutability over time of biochemical parameters. Here we consider the ubiquitously observed and fundamentally important signalling response known as Robust Perfect Adaptation (RPA). We have recently shown that all RPA-capable networks, even the most complex ones, must satisfy an extremely rigid set of design principles, and are modular, being decomposable into just two types of network building-blocks – Opposer modules, and Balancer modules. Here we present an overview of the design principles that characterize all RPA-capable network topologies through a detailed examination of a collection of simple examples. We also introduce a diagrammatic method for studying the potential of a network to exhibit RPA, which may be applied without a detailed knowledge of the complex mathematical principles governing RPA.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3