Abstract
AbstractFloating-Harbor syndrome (FHS) is a rare genetic disease affecting human development caused by heterozygous truncating mutations in the Srcap gene, which encodes the ATPase SRCAP, the core catalytic subunit of the homonymous chromatin-remodeling complex. Using a combined approach, we studied the involvement of SRCAP protein in cell cycle progression in HeLa cells. In addition to the canonical localization in interphase nuclei, both SRCAP and its Drosophila orthologue DOMINO-A localized to the mitotic apparatus after nuclear envelope breakdown. Moreover, SRCAP and DOMINO-A depletion impaired mitosis and cytokinesis in human and Drosophila cells, respectively. Importantly, SRCAP interacted with several cytokinesis regulators at telophase, strongly supporting a direct role in cytokinesis, independent of its chromatin remodeling functions. Our results provide clues about previously undetected, evolutionarily conserved roles of SRCAP in ensuring proper mitosis and cytokinesis. We propose that perturbations in cell division contribute to the onset of developmental defects characteristic of FHS.SummarySignificance statementSrcap is the causative gene of the rare Floating Harbor syndrome (FHS). It encodes the ATPase SRCAP, the core catalytic subunit of the homonymous multiprotein chromatin-remodeling complex in humans, which promotes the exchange of canonical histone H2A with the H2A.Z variant. According to the current view on SRCAP protein functions, FHS is caused by chromatin remodeling defects. Our findings suggest that, in addition to the established function as epigenetic regulator, SRCAP plays previously undetected and evolutionarily conserved roles in cell division. Hence, we propose that perturbations in cell division produced by SRCAP mutations are important causative factors co-occurring at the onset of FHS.
Publisher
Cold Spring Harbor Laboratory
Reference61 articles.
1. SnapShot: Chromatin Remodeling: INO80 and SWR1
2. Cytokinesis: Placing and Making the Final Cut
3. Citron kinase controls a molecular network required for midbody formation in cytokinesis;Proceedings of the National Academy of Sciences of the United States of America,2013
4. Context is everything: aneuploidy in cancer;Nature reviews. Genetics,2020
5. Perturbations of chromatin structure in human genetic disease: recent advances
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献