The protected physiological status of intracellular Salmonella enterica persisters reduces host cell-imposed stress

Author:

Schulte MarcORCID,Olschewski KatharinaORCID,Hensel MichaelORCID

Abstract

AbstractToday, we are faced with increasingly occurring bacterial infections that are hard to treat and often tend to relapse. These recurrent infections can occur possibly due to antibiotic-tolerant persister cells. Antibiotic persistent bacteria represent a small part of a bacterial population that enters a non-replicating (NR) state arising from phenotypic switching. Intracellularly, after uptake by phagocytic cells, Salmonella enterica serovar Typhimurium (STM) forms persister cells that are able to subvert immune defenses of the host. However, the clear physiological state and perceptual properties are still poorly understood and many questions remain unanswered. Here we describe further development of fluorescent protein-based reporter plasmids that were used to detect intracellular NR persister cells and monitor the expression of stress response genes via extensive flow cytometric analyses. Moreover, we performed extensive measurements of the metabolic properties of NR STM at the early course of infection. Our studies demonstrate that NR STM persister cells perceive their environment and are capable respond to stress factors. Since persisters showed a lower stress response compared to replicating (R) STM, which was not a consequence of a lower metabolic capacity, the persistent status of STM serves as protective niche. Furthermore, up to 95% of NR STM were metabolically active at the beginning of infection additionally showing no difference in the metabolic capacity compared to R STM. The accessory capability of NR STM persisters to sense and to react to stress with constant metabolic activity may supports the pathogen to create a more permissive environment for recurrent infections.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3