Abstract
AbstractFreshwater ecosystems of tropical urban canals systems (TrUCS), are highly dynamic and experience constant pressures from interspersed effects of land-use and rain. The dynamic nature of TrUCS ecosystems presents a unique opportunity to unravel the signature interactions between the macro-organisms (top-down), sedimentary microbial communities (SedMICs), their functioning and the geochemical environment (bottom-up). A systems level understanding of the molecular and mechanistic basis of the highly dynamic behaviour that leads to specific ecosystem outcomes, is currently lacking. Therefore, a research framework to identify the direct link between top-down and bottom-up ecological effects on SedMICs in a highly dynamic urban canal sedimentary system is needed. Here, we present a framework of integrated multi-dimensional data across system-level biotic and abiotic ecological descriptors, such as environmental variables and active SedMICs. We followed the ecosystem shifts after a natural disturbance (rain) in two different anthropogenic disturbance (land-use) regimes. Shifts in profiles of metabolically active community were conserved across different land-use types, indicating resilience to perturbation is an intrinsic property of the TrUCs ecosystem. Three distinct phases, which were dominated sequentially by autotrophy, anoxic-heterotrophy and oxic-heterotrophy, were identified within these shifts. The first two phases were influenced by the bottom-up effects of specific metal-ion combinations of nitrates and sulfates with magnesium, aluminum and iron, and the third phase was triggered by top-down influences of bioturbation. This generalized systems-level approach, which provides an ecosystem-centric understanding of TrUCS and integrates them in sustainable management practices, can also be extended to other freshwater ecosystems.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献