Engineered expression of the invertebrate-specific scorpion toxin AaHIT reduces adult longevity and female fecundity in the diamondback moth Plutella xylostella

Author:

Harvey-Samuel T.D.,Xu X.ORCID,Lovett E.,Dafa’alla T.,Walker A.,Norman V.C.,Carter R.,Teal J.,Akilan L.,Leftwich P.T.ORCID,Alphey L.ORCID

Abstract

AbstractBACKGROUNDPrevious Genetic Pest Management (GPM) systems in diamondback moth (DBM) have relied on expressing lethal proteins (‘effectors’) that are ‘cell-autonomous’ i.e. do not leave the cell they are expressed in. To increase the flexibility of future GPM systems in DBM, we aimed to assess the use of a non cell-autonomous, invertebrate-specific, neurotoxic effector – the scorpion toxin AaHIT. This AaHIT effector was designed to be secreted by expressing cells, potentially leading to effects on distant cells, specifically neuromuscular junctions.RESULTSExpression of AaHIT caused a ‘shaking/quivering’ phenotype which could be repressed by provision of an antidote (tetracycline); a phenotype consistent with the AaHIT mode-of-action. This effect was more pronounced when AaHIT expression was driven by the Hr5/ie1 promoter (82.44% of males, 65.14% of females) rather than Op/ie2 (57.35% of males, 48.39% of females). Contrary to expectations, the shaking phenotype and observed fitness costs were limited to adults where they caused severe reductions in mean longevity (–81%) and median female fecundity (–93%). qPCR of AaHIT expression patterns and analysis of piggyBac-mediated transgene insertion sites suggest that restriction of observed effects to the adult stages may be due to influence of local genomic environment on the tetO-AaHIT transgene.CONCLUSIONWe have demonstrated the feasibility of using non cell-autonomous effectors within a GPM context for the first time in the Lepidoptera, one of the most economically damaging orders of insects. These findings provide a framework for extending this system to other pest Lepidoptera and to other secreted effectors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3