Author:
Mogus Alemu Tekewe,Liu Lihong,Jia Manxue,Ajayi Diane T.,Xu Kai,Kong Rui,Huang Jing,Yu Jian,Kwong Peter D.,Mascola John R.,Ho David D.,Tsuji Moriya,Chackerian Bryce,
Abstract
AbstractBroadly neutralizing antibodies (bnAbs) isolated from HIV-infected individuals delineate vulnerable sites on the HIV envelope glycoprotein that are potential vaccine targets. A linear epitope at the N-terminal region of the HIV-1 fusion peptide (FP8) is the primary target of VRC34.01, a bnAb that neutralizes ~50% of primary HIV isolates. FP8 has attracted attention as a potential HIV vaccine target because it is a simple linear epitope. Here, we used platform technologies based on RNA bacteriophage virus-like particles (VLPs) to develop multivalent vaccines targeting the FP8 epitope. We produced recombinant MS2 VLPs displaying the FP8 peptide and we chemically conjugated synthetic FP8 peptides to Qβ VLPs. Both recombinant and conjugated FP8-VLPs induced high titers of FP8-specific antibodies in mice. A heterologous prime-boost-boost regimen employing the two FP8-VLP vaccines and native envelope trimer was the most effective approach for eliciting HIV-1 neutralizing antibodies. Given the potent immunogenicity of VLP-based vaccines, this vaccination strategy – inspired by bnAb-guided epitope mapping, VLP bioengineering, and optimal prime-boost immunization strategies – may be an effective strategy for eliciting bnAb responses against HIV.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献