Transcriptomic, protein-DNA interaction, and metabolomic studies of VosA, VelB, and WetA in Aspergillus nidulans asexual spores

Author:

Wu Ming-Yueh,Mead Matthew E.ORCID,Lee Mi-Kyung,Neuhaus George F.,Adpressa Donovon A.,Martien Julia I.,Son Ye-Eun,Moon Heungyun,Amador-Noguez Daniel,Han Kap-Hoon,Rokas AntonisORCID,Loesgen SandraORCID,Yu Jae-HyukORCID,Park Hee-Soo

Abstract

AbstractIn filamentous fungi, asexual development involves morphological differentiation and metabolic changes leading to the formation of asexual spores. The process of asexual spore formation in Aspergillus is precisely regulated by multiple transcription factors (TFs), including VosA, VelB, and WetA, and these three TFs are key regulators of the formation and maturation of asexual spores (conidia) in Aspergillus including the model fungus Aspergillus nidulans. To gain a mechanistic insight on the complex regulatory roles of these TFs in asexual spores, we conducted genome-wide studies on the expression, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation-sequencing data have revealed that the three TFs directly or indirectly regulate the expression of genes associated with spore-wall formation/integrity, asexual development, and secondary metabolism. In addition, metabolomics analyses of wild-type and mutant conidia indicate that these three TFs regulate a diverse array of primary and secondary metabolism. In summary, WetA, VosA, and VelB play inter-dependent and distinct roles governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia.ImportanceFilamentous fungi produce a vast number of asexual spores that act as reproductive and propagator cells. These spores affect humans, due to the infectious or allergenic nature of the propagule. Aspergillus species produce asexual spores called conidia and their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by spore-specific transcription factors. To understand the underlying global regulatory programs and cellular outcomes associated with conidia formation, functional genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans. Our results show that the fungus specific WetA/VosA/VelB transcription factors govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the genetic regulatory networks about how morphological developments and metabolic changes are coordinated in fungi. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin-producer Aspergillus flavus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3