Author:
Kumar Amit,Kumar Ankur,Kumar Prateek,Garg Neha,Giri Rajanish
Abstract
AbstractNonstructural protein 1 (NSP1) of SARS-CoV-2 plays a key role in downregulation of RIG-I pathways and interacts with 40 S ribosome. Recently, the cryo-EM structure in complex with 40S ribosome is deciphered. However, the structure of full length NSP1 without any partner has not been studies. Also, the conformation of NSP1-C terminal region in isolation is not been studied. In this study, we have investigated the conformational dynamics of NSP1C-terminal region (NSP1-CTR; amino acids 130-180) in isolation and under different solvent environments. The NSP1-CTR is found to be intrinsically disordered in aqueous solution. Further, we used alpha helix inducer, trifluoroethanol, and found induction of alpha helical conformation using CD spectroscopy. Additionally, in the presence of SDS, NSP1-CTR is showing a conformational change from disordered to ordered, possibly gaining alpha helix in part. But in presence of neutral lipid DOPC, a slight change in conformation is observed. This implies the possible role of hydrophobic interaction and electrostatic interaction on the conformational changes of NSP1. The changes in structural conformation were further studied by fluorescence-based studies, which showed significant blue shift and fluorescence quenching in the presence of SDS and TFE. Lipid vesicles also showed fluorescence-based quenching. In agreement to these result, fluorescence lifetime and fluorescence anisotropy decay suggests a change in conformational dynamics. The zeta potential studies further validated that the conformational dynamics is mostly because of hydrophobic interaction. In last, these experimental studies were complemented through Molecular Dynamics (MD) simulation which have also shown a good correlation and testify our experiments. We believe that the intrinsically disordered nature of the NSP1-CTR will have implications in disorder based binding promiscuity with its interacting proteins.
Publisher
Cold Spring Harbor Laboratory