A co-infection model for Oncogenic HPV and TB with Optimal Control and Cost-Effectiveness Analysis

Author:

Omame A.ORCID,Okuonghae D.ORCID

Abstract

AbstractA co-infection model for oncogenic Human papillomavirus (HPV) and Tuberculosis (TB), with optimal control and cost-effectiveness analysis is studied and analyzed to assess the impact of controls against incident infection and against infection with HPV by TB infected individuals as well as optimal TB treatment in reducing the burden of the co-infection of the two diseases in a population. The co-infection model is shown to exhibit the dynamical property of backward bifurcation when the associated reproduction number is less than unity. Furthermore, it is shown that TB and HPV re-infection parameters (ϕp = 0 and σt = 0) as well as TB exogenous re-infection term (ε1 0) induced the phenomenon of backward bifurcation in the oncogenic HPV-TB co-infection model. The global asymptotic stability of the disease-free equilibrium of the co-infection model is also proven not to exist, when the associated reproduction number is below unity. The necessary conditions for the existence of optimal control and the optimality system for the co-infection model is established using the Pontryagin ‘s Maximum Principle. Uncertainty and global sensitivity analysis are also carried out to determine the top ranked parameters that drive the dynamics of the co-infection model, when the associated reproduction numbers as well as the infected populations are used as response functions. Numerical simulations of the optimal control model reveal that the intervention strategy which combines and implements control against HPV infection by TB infected individuals as well as TB treatment control for dually infected individuals is the most cost-effective of all the control strategies for the control and management of the burden of oncogenic HPV and TB co-infection.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. FB Agusto , AI Adekunle , Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model, BioSystems, (2014) (119) 20–24.

2. Frequency of human papillomavirus (HPV) subtypes 31, 33, 35, 39 and 45 among Yemeni women with cervical cancer;Infect. Ag. Cancer,2015

3. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example;International Statistical Review,1994

4. Incremental Cost-Effectiveness Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3