The structural basis of the oncogenic mutant K-Ras4B homodimers

Author:

Kosoglu Kayra,Omur Meltem Eda,Jang Hyunbum,Nussinov Ruth,Keskin OzlemORCID,Gursoy Attila

Abstract

AbstractRas proteins activate their effectors through physical interactions in response to the various extracellular stimuli at the plasma membrane. Oncogenic Ras forms dimer and nanoclusters at the plasma membrane, boosting the downstream MAPK signal. It was reported that K-Ras4B can dimerize through two major interfaces: (i) the effector lobe interface, mapped to Switch I and effector binding regions; (ii) the allosteric lobe interface involving α3 and α4 helices. Recent experiments showed that constitutively active, oncogenic mutant K-Ras4BG12D dimers are enriched in the plasma membrane. Here, we perform molecular dynamics simulations of K-Ras4BG12D homodimers aiming to quantify the two major interfaces in atomic level. To examine the effect of mutations on dimerization, two double mutations, K101D/R102E on the allosteric lobe and R41E/K42D on the effector lobe interfaces were added to the K-Ras4BG12D dimer simulations. We observed that the effector lobe K-Ras4BG12D dimer is stable, while the allosteric lobe dimer alters its helical interface during the simulations, presenting multiple conformations. The K101D/R102E mutations slightly weakens the allosteric lobe interface. However, the R41E/K42D mutations disrupt the effector lobe interface. Using the homo-oligomers prediction server, we obtained trimeric, tetrameric, and pentameric complexes with the allosteric lobe K-Ras4BG12D dimers. However, the allosteric lobe dimer with the K101D/R102E mutations is not capable of generating multiple higher order structures. Our detailed interface analysis may help to develop inhibitor design targeting functional Ras dimerization and high order oligomerization at the membrane signaling platform.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3