Characterising the methylome of Legionella longbeachae serogroup 1 clinical isolates and assessing geo-temporal genetic diversity

Author:

Slow SORCID,Anderson TORCID,Murdoch DRORCID,Bloomfield SORCID,Winter DORCID,Biggs PJORCID

Abstract

AbstractLegionella longbeachae is an environmental bacterium that is commonly found in soil and composted plant material. In New Zealand (NZ) it is the most clinically significant Legionella species causing around two-thirds of all notified cases of Legionnaires’ disease. Here we report the sequencing and analysis of the geo-temporal genetic diversity of 54 L. longbeachae serogroup 1 (sg1) clinical isolates that were derived from cases from around NZ over a 22-year period, including one complete genome and its associated methylome.Our complete genome consisted of a 4.1 Mb chromosome and a 108 kb plasmid. The genome was highly methylated with two known epigenetic modifications, m4C and m6A, occurring in particular sequence motifs within the genome. Phylogenetic analysis demonstrated the 54 sg1 isolates belonged to two main clades that last shared a common ancestor between 108 BCE and 1608 CE. These isolates also showed diversity at the genome-structural level, with large-scale arrangements occurring in some regions of the chromosome and evidence of extensive chromosomal and plasmid recombination. This includes the presence of plasmids derived from recombination and horizontal gene transfer between various Legionella species, indicating there has been both intra-species and inter-species gene flow. However, because similar plasmids were found among isolates within each clade, plasmid recombination events may pre-empt the emergence of new L. longbeachae strains.Our high-quality reference genome and extensive genetic diversity data will serve as a platform for future work linking genetic, epigenetic and functional diversity in this globally important emerging environmental pathogen.Author SummaryLegionnaires’ disease is a serious, sometimes fatal pneumonia caused by bacteria of the genus Legionella. In New Zealand, the species that causes the majority of disease is Legionella longbeachae. Although the analyses of pathogenic bacterial genomes is an important tool for unravelling evolutionary relationships and identifying genes and pathways that are associated with their disease-causing ability, until recently genomic data for L. longbeachae has been sparse. Here, we conducted a large-scale genomic analysis of 54 L. longbeachae isolates that had been obtained from people hospitalised with Legionnaires’ disease between 1993 and 2015 from 8 regions around New Zealand. Based on our genome analysis the isolates could be divided into two main groups that persisted over time and last shared a common ancestor up to 1700 years ago. Analysis of the bacterial chromosome revealed areas of high modification through the addition of methyl groups and these were associated with particular DNA sequence motifs. We also found there have been large-scale rearrangements in some regions of the chromosome, producing variability between the different L. longbeacahe strains, as well as evidence of gene-flow between the various Legionella species via the exchange of plasmid DNA.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3