Learning at variable attentional load requires cooperation between working memory, meta-learning and attention-augmented reinforcement learning

Author:

Womelsdorf ThiloORCID,Watson Marcus R.,Tiesinga PaulORCID

Abstract

AbstractFlexible learning of changing reward contingencies can be realized with different strategies. A fast learning strategy involves using working memory of recently rewarded objects to guide choices. A slower learning strategy uses prediction errors to gradually update value expectations to improve choices. How the fast and slow strategies work together in scenarios with real-world stimulus complexity is not well known. Here, we disentangle their relative contributions in rhesus monkeys while they learned the relevance of object features at variable attentional load. We found that learning behavior across six subjects is consistently best predicted with a model combining (i) fast working memory (ii) slower reinforcement learning from differently weighted positive and negative prediction errors, as well as (iii) selective suppression of non-chosen feature values and (iv) a meta-learning mechanism adjusting exploration rates based on a memory trace of recent errors. These mechanisms cooperate differently at low and high attentional loads. While working memory was essential for efficient learning at lower attentional loads, enhanced weighting of negative prediction errors and meta-learning were essential for efficient learning at higher attentional loads. Together, these findings pinpoint a canonical set of learning mechanisms and demonstrate how they cooperate when subjects flexibly adjust to environments with variable real-world attentional demands.Significance statementLearning which visual features are relevant for achieving our goals is challenging in real-world scenarios with multiple distracting features and feature dimensions. It is known that in such scenarios learning benefits significantly from attentional prioritization. Here we show that beyond attention, flexible learning uses a working memory system, a separate learning gain for avoiding negative outcomes, and a meta-learning process that adaptively increases exploration rates whenever errors accumulate. These subcomponent processes of cognitive flexibility depend on distinct learning signals that operate at varying timescales, including the most recent reward outcome (for working memory), memories of recent outcomes (for adjusting exploration), and reward prediction errors (for attention augmented reinforcement learning). These results illustrate the specific mechanisms that cooperate during cognitive flexibility.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3