Nonself-recognition-based self-incompatibility can alternatively promote or prevent introgression

Author:

Harkness Alexander,Brandvain Yaniv

Abstract

1SummaryTraditionally, we expect that self-incompatibility alleles (S-alleles), which prevent self-fertilization, should benefit from negative-frequency dependent selection and rise to high frequency when introduced to a new population through gene flow. However, the most taxonomically widespread form of self-incompatibility, the ribonuclease-based system ancestral to the core eudicots, functions through nonself-recognition, which drastically alters the process of S-allele diversification.We analyze a model of S-allele evolution in two populations connected by migration, focusing on comparisons among the fates of S-alleles originally unique to each population and those shared among populations.We find that both shared and unique S-alleles originating from the population with more unique S-alleles were usually fitter than S-alleles from the population with fewer. Resident S-alleles were often driven extinct and replaced by migrant S-alleles, though this outcome could be averted by pollen limitation or biased migration.Nonself-recognition-based self-incompatibility will usually either disfavor introgression of S-alleles or result in the whole-sale replacement of S-alleles from one population with those from another.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3