A first-takes-all model of centriole copy number control

Author:

Dias Louro Marco AntónioORCID,Bettencourt-Dias Mónica,Carneiro JorgeORCID

Abstract

AbstractHow cells control the numbers of its subcellular components is a fundamental question in biology. Given that biosynthetic processes are fundamentally stochastic it is utterly puzzling that some structures display no copy number variation within a cell population. Centriole biogenesis, with each centriole being duplicated once and only once per cell cycle, stands out due to its remarkable fidelity. This is a highly controlled process, which depends on low-abundance rate-limiting factors. How can exactly one centriole copy be produced given the natural variation in the concentration of these key players? Hitherto, tentative explanations of this control evoked lateral inhibition-or phase separation-like mechanisms emerging from the dynamics of these rate-limiting factors, but how centriole number is regulated remains unclear. Here, we propose a novel solution to centriole copy number control based on the assembly of a centriolar scaffold, the cartwheel. We hypothesise that once the first cartwheel is formed it continues to elongate by stacking the intermediate cartwheel building blocks that would otherwise form supernumerary structures. Using probability theory and computer simulations, we show that this mechanism may ensure formation of one and only one cartwheel over a wide range of parameter values at physiologically relevant conditions. By comparison to alternative models, we conclude that the key signatures of this novel mechanism are an increasing assembly time with cartwheel numbers and that stochasticity in cartwheel building blocks should be converted into variation in cartwheel numbers or length, both of which can be tested experimentally.Author summaryCentriole duplication stands out as a biosynthetic process of exquisite fidelity in the noisy world of the cell. Each centriole duplicates exactly once per cell cycle, such that the number of centrioles per cell shows no variance across cells, in contrast with most cellular components that show broadly distributed copy numbers. We propose a new solution to the number control problem. We show that elongation of the first cartwheel, a core centriolar structure, may sequester the building blocks necessary to assemble supernumerary centrioles. As a corollary, the variation in regulatory kinases and cartwheel components across the cell population is predicted to translate into cartwheel length variation instead of copy number variation, which is an intriguing overlooked possibility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3