Abstract
AbstractHow cells control the numbers of its subcellular components is a fundamental question in biology. Given that biosynthetic processes are fundamentally stochastic it is utterly puzzling that some structures display no copy number variation within a cell population. Centriole biogenesis, with each centriole being duplicated once and only once per cell cycle, stands out due to its remarkable fidelity. This is a highly controlled process, which depends on low-abundance rate-limiting factors. How can exactly one centriole copy be produced given the natural variation in the concentration of these key players? Hitherto, tentative explanations of this control evoked lateral inhibition-or phase separation-like mechanisms emerging from the dynamics of these rate-limiting factors, but how centriole number is regulated remains unclear. Here, we propose a novel solution to centriole copy number control based on the assembly of a centriolar scaffold, the cartwheel. We hypothesise that once the first cartwheel is formed it continues to elongate by stacking the intermediate cartwheel building blocks that would otherwise form supernumerary structures. Using probability theory and computer simulations, we show that this mechanism may ensure formation of one and only one cartwheel over a wide range of parameter values at physiologically relevant conditions. By comparison to alternative models, we conclude that the key signatures of this novel mechanism are an increasing assembly time with cartwheel numbers and that stochasticity in cartwheel building blocks should be converted into variation in cartwheel numbers or length, both of which can be tested experimentally.Author summaryCentriole duplication stands out as a biosynthetic process of exquisite fidelity in the noisy world of the cell. Each centriole duplicates exactly once per cell cycle, such that the number of centrioles per cell shows no variance across cells, in contrast with most cellular components that show broadly distributed copy numbers. We propose a new solution to the number control problem. We show that elongation of the first cartwheel, a core centriolar structure, may sequester the building blocks necessary to assemble supernumerary centrioles. As a corollary, the variation in regulatory kinases and cartwheel components across the cell population is predicted to translate into cartwheel length variation instead of copy number variation, which is an intriguing overlooked possibility.
Publisher
Cold Spring Harbor Laboratory