Refinement of a Cryo-EM Structure of hERG: Bridging Structure and Function

Author:

Khan H.M.,Guo J.,Duff H.J.,Tieleman D. P.ORCID,Noskov S. Y.

Abstract

AbstractThe human ether-a-go-go-related gene (hERG) encodes the voltage gated potassium channel (KCNH2 or Kv11.1, commonly known as hERG). This channel plays a pivotal role in the stability of phase 3 repolarization of the cardiac action potential. Although a high-resolution cryo-EM structure is available for its depolarized (open) state, the structure surprisingly did not feature many functionally important interactions established by previous biochemical and electrophysiology experiments. Using Molecular Dynamics Flexible Fitting (MDFF), we refined the structure and recovered the missing functionally relevant salt bridges in hERG in its depolarized state. We also performed electrophysiology experiments to confirm the functional relevance of a novel salt bridge predicted by our refinement protocol. Our work shows how refinement of a high-resolution cryo-EM structure helps to bridge the existing gap between the structure and function in the voltage-sensing domain (VSD) of hERG.Statement of SignificanceCryo-EM has emerged as a major breakthrough technique in structural biology of membrane proteins. However, even high-resolution Cryo-EM structures contain poor side chain conformations and interatomic clashes. A high-resolution cryo-EM structure of hERG1 has been solved in the depolarized (open) state. The state captured by Cryo-EM surprisingly did not feature many functionally important interactions established by previous experiments. Molecular Dynamics Flexible Fitting (MDFF) used to enable refinement of the hERG1 channel structure in complex membrane environment re-establishing key functional interactions in the voltage sensing domain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3