Flexible RSV prefusogenic fusion glycoprotein exposes multiple neutralizing epitopes that may collectively contribute to protective immunity

Author:

Patel Nita,Tian Jing-Hui,Flores Rhonda,Jacobson Kelsey,Walker Michelle,Portnoff Alyse,Gueber-Xabier Mimi,Massare Michael J.,Glenn Greg,Ellingsworth Larry,Smith Gale

Abstract

AbstractHuman respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infection in infants, young children, and older adults. There is no licensed vaccine and prophylactic treatment options are limited and not widely available in developing countries with the greatest disease burden. The RSV fusion (F) glycoprotein is a primary target of host immunity and thus a major focus for vaccine development. The native F glycoprotein structure is flexible and undergoes significant rearrangements from the metastable prefusion to a stable postfusion structure with neutralizing epitopes on intermediate structures. We hypothesize trimeric vaccine strategies that recapitulate the breathable F quaternary structure, and provide accessibility of B-cells to epitopes on intermediate conformations, may collectively contribute to protective immunity, while ridge prefusion F structures restrict access to key protective epitopes. To test this hypothesis, we used the near full-length native prefusogenic F as a backbone to construct three prefusion F variants with substitutions in the hydrophobic head cavity: 1) disulfide bond double mutant (DS), 2) space filling hydrophobic amino acid substitutions (Cav1), and 3) DS plus Cav1 substitutions (DS-Cav1). In this study, we compared the immunogenicity of prefusogenic F to the immunogenicity of the prefusion F variants in two animal models. Native prefusogenic F was significantly more immunogenic producing high titer antibodies to prefusogenic, prefusion, and postfusion F structures compared to animals immunized with prefusion F DS or DS-Cav1. Importantly, native prefusogenic F elicited antibodies that targeted neutralizing epitopes including prefusion-specific site zero (Ø) and V as well as conformation-independent neutralizing sites II and IV. Immunization with prefusion F DS or DS-Cav1 elicited antibodies primarily targeting antigenic sites Ø and V with little or no detectable antibodies to other key neutralizing sites. Animals immunized with native prefusogenic F also had significantly higher neutralizing antibodies that cross-neutralized RSV A and B subtypes while immunization with DS or DS-Cav1 elicited neutralizing antibodies primarily to the A subtype. We conclude that breathable trimeric vaccines that closely mimic the native F-structure, and incorporate strategies for B-cell accessibility to protective epitopes, are important considerations for vaccine design. F structures locked in a single conformation restrict B-cell access to neutralizing epitopes that may collectively contribute to destabilizing F-trimers important for broad protection. These results also have implications for vaccine strategies targeting other type 1 integral membrane proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3