Exploring genetic resistance to Infectious Salmon Anaemia Virus in Atlantic salmon by genome-wide association and RNA sequencing

Author:

Gervais O.,Barria A.,Papadopoulou A.,Gratacap R.,Hillestad B.,Tinch A.E.,Martin S.A.M.ORCID,Robledo DORCID,Houston R.D.

Abstract

ABSTRACTInfectious Salmonid Anaemia Virus (ISAV) causes a notifiable disease that poses a large threat for Atlantic salmon breeders and producers worldwide. There is no fully effective treatment or vaccine, and therefore selective breeding to increase resistance to ISAV in commercial strains of Atlantic salmon is a promising avenue for disease prevention. Genomic selection and potentially genome editing can be applied to enhance host resistance, and these approaches benefit from improved knowledge of the genetic and functional basis of the target trait. The aim of this study was to characterise the genetic architecture of resistance to ISAV in a commercial Atlantic salmon population and study its underlying functional genomic basis using RNA Sequencing. A total of 2,833 Atlantic salmon parr belonging to 194 families were exposed to ISAV in a cohabitation challenge in which cumulative mortality reached 63% over 55 days. A total of 1,353 animals were genotyped using a 55K SNP array, and the estimate of heritability for the trait of binary survival was 0.33 (±0.04). A genome-wide association analysis confirmed that resistance to ISAV was a polygenic trait, albeit a genomic region in chromosome 13 was significantly associated with resistance and explained 3% of the genetic variance. RNA sequencing of the heart of 16 infected (7 and 14 days post infection) and 8 control fish highlighted 4,927 and 2,437 differentially expressed genes at 7 and 14 days post infection respectively. The complement and coagulation pathway was down-regulated, while several metabolic pathways were up-regulated in infected fish compared to controls. The interferon pathway was mildly activated at 7 days and showed no sign of up-regulation at 14 days post infection, implying a crosstalk between host and virus. Comparison of the transcriptomic response of fish with high and low breeding values for resistance (4 high resistance and 4 low resistance animals per time point) highlighted TRIM25 as being up-regulated in resistant fish, suggesting it may be a key antiviral gene involved in the functional genetic basis of resistance to ISAV.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3