Impaired p53-mediated DNA damage response contributes to microcephaly in Nijmegen Breakage Syndrome patient-derived cerebral organoids

Author:

Martins SoraiaORCID,Erichsen Lars,Datsi Angeliki,Wruck Wasco,Goering Wolfgang,Chrzanowska Krystyna,Adjaye James

Abstract

Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder caused by mutations within NBN, a DNA-damage repair protein. Hallmarks of NBS include several clinical manifestations such growth retardation, chromosomal instability, immunodeficiency and progressive microcephaly. However, the etiology of microcephaly in NBS patients remains elusive. Here, we employed induced pluripotent stem cell-derived brain organoids from two NBS patients to analyze the underlying mechanisms of microcephaly. We show that NBS-organoids carrying the homozygous 647del5 NBN mutation are significantly smaller in size with disrupted cyto-architecture Patient-derived organoids exhibit premature differentiation together with neuronatin (NNAT) overexpression and key pathways related to DNA damage response and cell cycle are differentially regulated compared to controls. Moreover, we show that after exposure to bleomycin, NBS organoids undergo a delayed p53-mediated DNA damage response and aberrant trans-synaptic signalling, which ultimately leads to neuronal apoptosis. Our data provide insights into how mutations within NBN alters neurogenesis in NBS patients, thus providing a proof of concept that cerebral organoids are a valuable tool for studying DNA damage-related disorders.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. The role of the DNA damage response in neuronal development, organization and maintenance

2. Oxidative stress and neurodegeneration: where are we now?

3. Nijmegen breakage syndrome (NBS);Orphanet journal of rare diseases,2012

4. A NEW CHROMOSOMAL INSTABILITY DISORDER: THE NIJMEGEN BREAKAGE SYNDROME

5. Varon, R. , Demuth, I. Chrzanowska, K. H. Nijmegen Breakage Syndrome. GeneReviews® (University of Washington, Seattle, 1993).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3