Intercontinental prediction of soybean phenology via hybrid ensemble of knowledge-based and data-driven models

Author:

McCormick Ryan F.ORCID,Truong Sandra K.ORCID,Rotundo Jose,Gaspar Adam P.ORCID,Kyle Don,van Eeuwijk FredORCID,Messina Carlos D.ORCID

Abstract

AbstractThe timing of crop development has significant impacts on management decisions and subsequent yield formation. A large intercontinental dataset recording the timing of soybean developmental stages was used to establish ensembling approaches that leverage both discrete-time dynamical system models of soybean phenology and data-driven, machine-learned models to achieve accurate and interpretable predictions. We demonstrate that the knowledge-based, dynamical models can improve machine learning by generating expert-engineered features. Combining the predictions of the diverse component models via super learning resulted in a mean absolute error of 4.12 and 4.55 days to flowering (R1) and physiological maturity (R7), providing an improvement relative to the best benchmark model error of 6.90 and 15.47 days, respectively. The hybrid intercontinental model applies to a much wider range of management and temperature conditions than previous mechanistic models, enabling improved decision support as alternative cropping systems arise, farm sizes increase, and changes in the global climate continue to accelerate.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. , Isard, M. , Kudlur, M. , Levenberg, J. , Monga, R. , Moore, S. , Murray, D.G. , Steiner, B. , Tucker, P. , Vasudevan, V. , Warden, P. , Wicke, M. , Yu, Y. , Zheng, X. , 2016. TensorFlow: A system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp. 265–283.

2. The genetic basis of flowering responses to seasonal cues

3. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: application to soybean;Environ. Model. Softw,2014

4. Model-based machine learning;Philos. Trans. R. Soc. Math. Phys. Eng. Sci,2013

5. Boote, K.J. , Jones, J.W. , Hoogenboom, G. , Pickering, N.B. , 1998. The CROPGRO model for grain legumes, in: Tsuji, G.Y. , Hoogenboom, Gerrit , Thornton, P.K. (Eds.), Understanding Options for Agricultural Production, Systems Approaches for Sustainable Agricultural Development. Springer Netherlands, Dordrecht, pp. 99–128. https://doi.org/10.1007/978-94-017-3624-4_6

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3