Quantifying proximity, confinement, and interventions in disease outbreaks: a decision support framework for air-transported pathogens

Author:

Bond Tami C.ORCID,Bosco-Lauth AngelaORCID,Farmer Delphine K.ORCID,Francisco Paul W.ORCID,Pierce Jeffrey R.ORCID,Fedak Kristen M.,Ham Jay M.ORCID,Jathar Shantanu H.ORCID,VandeWoude SueORCID

Abstract

AbstractThe inability to communicate how infectious diseases are transmitted in human environments has triggered avoidance of interactions during the COVID-19 pandemic. We define a metric, Effective ReBreathed Volume (ERBV), that encapsulates how infectious pathogens transport in air. This measure distinguishes environmental transport from other factors in the chain of infection, thus allowing quantitative comparisons of the riskiness of different situations for any pathogens transported in air, including SARS-CoV-2. Particle size is a key factor in transport, removal onto surfaces, and elimination by mitigation measures, so ERBV is presented for a range of exhaled particle diameters: 1 μm, 10 μm, and 100 μm. Pathogen transport is enhanced by two separate but interacting effects: proximity and confinement. Confinement in enclosed spaces overwhelms proximity after 10–15 minutes for all but the largest particles. Therefore, we review plausible strategies to reduce the confinement effect. Changes in standard ventilation and filtration can reduce person-to-person transport of 1-μm particles (ERBV1) by 13-85% in residential and commercial situations. Deposition to surfaces competes with intentional removal for 10-μm and 100-μm particles, so the same interventions reduce ERBV10 by only 3-50%, and ERBV100 is unaffected. Determining transmission modes is critical to identify intervention effectiveness, and would be accelerated with prior knowledge of ERBV. When judiciously selected, the interventions examined can provide substantial reduction in risk, and the conditions for selection are identified. The framework of size-dependent ERBV supports analysis and mitigation decisions in an emerging situation, even before other infectious parameters are well known.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3