Wheat transcriptome profiling reveals abscisic and gibberellic acid treatments regulate early-stage phytohormone defense signaling, cell wall fortification, and metabolic switches following Fusarium graminearum-challenge

Author:

Buhrow Leann M.,Liu Ziying,Cram Dustin,Sharma Tanya,Foroud Nora A.,Pan YoulianORCID,Loewen Michele C.ORCID

Abstract

ABSTRACTBackgroundApplication of the wheat phytohormones abscisic acid (ABA) or gibberellic acid (GA) affect Fusarium head blight (FHB) disease severity; however, the molecular underpinnings of the elicited phenotypes remain unclear. Herein, the transcriptomic responses of an FHB-susceptible wheat cultivar ‘Fielder’ were characterized upon treatment with ABA, an ABA receptor antagonist (AS6), or GA in the presence or absence of Fusarium graminearum (Fg) challenge.ResultsA total of 30,876 differentially expressed genes (DEGs) where identified in ‘Fielder’ (26,004) and Fg (4,872). Fg challenge alone resulted in the most substantial wheat DEGs contributing to 57.2% of the total transcriptomic variation. Using a combination of topology overlap and correlation analyses, 9,689 Fg-related wheat DEGs were defined. Further enrichment analysis of the top 1% networked wheat DEGs identified critical expression changes within defense responses, cell structural metabolism, molecular transport, and membrane/lipid metabolism. Fg-challenged conditions also included the expression of a putative Fg ABA-biosynthetic cytochrome P450 and repression of wheat FUS3 for dysregulating ABA and GA crosstalk. ABA treatment alone elicited 4536 (32%) wheat DEGs common to those of the Fg-challenge, and Fg+ABA further enhanced 888 (12.5%) of them. These ABA elicited DEGs are involved in defense through both classical and non-classical phytohormone signaling and regulating cell wall structures including polyphenolic metabolism. Conversely, Fg+GA opposed 2239 (33%) Fg-elicited wheat DEGs, including modulating primary and secondary metabolism, defense responses, and flowering genes. ABA and jointly ABA⍰Fg⍰[Fg+ABA] treatments repressed, while Fg+GA induced an over-representation of wheat DEGs mapping to chromosome 6BL. Finally, compared to Fg+ABA, co-application of Fg+AS6 did not antagonize ABA biosynthesis or signal but rather elicited antagonistic Fg (557) and wheat (11) DEGs responses directly tied to stress responses, phytohormone transport, and FHB.ConclusionsComparative transcriptomics highlight the effects of wheat phytohormones on individual pathway and global metabolism simultaneously. Application of ABA may reduce FHB severity through misregulating defense mechanisms and cell wall fortification pathways. GA application may alter primary and secondary metabolism, creating a metabolic shift to ultimately reduce FHB severity. By comparing these findings to those previously reported for four additional plant genotypes, an additive model of the wheat-Fg interaction is proposed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3