Parallel evolution of direct development in frogs – Skin and thyroid gland development in African Squeaker Frogs (Anura: Arthroleptidae: Arthroleptis)

Author:

Naumann Benjamin,Schweiger Susan,Hammel Jörg U.,Müller Hendrik

Abstract

AbstractCases of parallel evolution offer the possibility to identify adaptive traits and to uncover developmental constraints on the evolutionary trajectories of these traits. The independent evolution of direct development, from the ancestral biphasic life history in frogs is such a case of parallel evolution. In frogs, aquatic larvae (tadpoles) differ profoundly from their adult forms and exhibit a stunning diversity regarding their habitats, morphology and feeding behaviors. The transition from the tadpole to the adult is a climactic, thyroid hormone (TH)-dependent process of profound and fast morphological rearrangement called metamorphosis. One of the organ systems that experiences the most comprehensive metamorphic rearrangements is the skin. Direct-developing frogs lack a free-swimming tadpole and hatch from terrestrial eggs as fully formed froglets. In the few species examined, development is characterized by the condensed and transient formation of some tadpole-specific features and the early formation of adult-specific features during a “cryptic” metamorphosis. In this study we show that skin in direct-developing African squeaker frogs (Arthroleptis) is also repatterned from a tadpole-like to an adult-like histology during a cryptic metamorphosis. This repatterning correlates with an increase of thyroid gland activity. A comparison with data from the Puerto Rican coqui (Eleutherodactylus coqui) reveals that direct development might have evolved in parallel in these frogs by a comparable heterochronic shift of thyroid gland activity. This suggests that the development of many adult-features is still constrained by the ancestral dependency on thyroid hormone signaling.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3