Abstract
AbstractWe present an optimized protocol for enhanced amplification and enrichment of viral DNA for Next Generation Sequencing of begomovirus genomes. The rapid ability of these viruses to evolve threatens many crops and underscores the importance of using next generation sequencing efficiently to detect and understand the diversity of these viruses. We combined enhanced rolling circle amplification (RCA) with EquiPhi29 polymerase and size selection to generate a cost-effective, short-read sequencing method. This optimized protocol produced short-read sequencing with at least 50% of the reads mapping to the viral reference genome. We provide other insights into common misconceptions about RCA and lessons we have learned from sequencing single-stranded DNA viruses. Our protocol can be used to examine viral DNA as it moves through the entire pathosystem from host to vector, providing valuable information for viral DNA population studies, and would likely work well with other CRESS DNA viruses.HighlightsProtocol for short-read, high throughput sequencing of single-stranded DNA viruses using random primersComparison of the sequencing of total DNA versus size-selected DNAComparison of phi29 and Equiphi29 DNA polymerases for rolling circle amplification of viral single-stranded DNA genomes
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献