Applications of spatial models to ordinal data

Author:

Xu Zhanyou,Cannon Steven B.,Beavis William D.ORCID

Abstract

AbstractModels have been developed to account for heterogeneous spatial variation in field trials. These spatial models have been shown to successfully increase the quality of phenotypic data resulting in improved effectiveness of selection by plant breeders. The models were developed for continuous data types such as grain yield and plant height, but data for most traits, such as in iron deficiency chlorosis (IDC), are recorded on ordinal scales. Is it reasonable to make spatial adjustments to ordinal data by simply applying methods developed for continuous data? The objective of the research described herein is to evaluate methods for spatial adjustment on ordinal data, using soybean IDC as an example. Spatial adjustment models are classified into three different groups: group I, moving average grid adjustment; group II, geospatial autoregressive regression (SAR) models; and group III, tensor product penalized P-splines. Comparisons of eight models sampled from these three classes demonstrate that spatial adjustments depend on severity of field heterogeneity, the irregularity of the spatial patterns, and the model used. SAR models generally produce better performance metrics than other classes of models. However, none of the eight evaluated models fully removed spatial patterns indicating that there is a need to either adjust existing models or develop novel models for spatial adjustments of ordinal data collected in fields exhibiting discontinuous transitions between heterogeneous patches.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Field and nutrient solution tests measure similar mechanisms controlling iron deficiency chlorosis in soybean;Crop Science,1998

2. A comparison of three methods for reducing iron-deficiency chlorosis in soybean;Agronomy Journal,2000

3. Y Chart . US Soybeans Acres Planted [Internet web]. Web 2020 [cited 2020 July 10, 2020]. US Soybean Acres Planted]. Available from: https://ycharts.com/indicators/us_soybeans_acres_planted.

4. Yield reduction from iron deficiency chlorosis in soybeans;Agronomy Abstracts,1980

5. Iron Deficiency of Soybean in the Upper Midwest and Associated Soil Properties

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3