The Impact of The Hydroxymethyl-Cytosine Epigenetic Signature on DNA Structure And Function

Author:

Battistini Federica,Dans Pablo D.,Terrazas Montserrat,Castellazzi Chiara L.,Portella Guillem,Labrador Mireia,Villegas Núria,Brun-Heath Isabelle,González Carlos,Orozco Modesto

Abstract

ABSTRACTWe present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties not too different to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methyl-cytosine (mC) and 5-hydroxymethyl-cytosine (hmC) generally lead to more rigid duplexes with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). On the contrary, our simulations suggest that methylated-DNA binding domains (MBD), associated with repression activities, are very sensitive to the substitution d(mCpG)→ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) → d(hmCpG) change. Overall, while changes in gene activity due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3