Transcriptional Control Of Calmodulin By CAMTA Regulates Neural Excitability

Author:

Vuong-Brender Thanh T. K.,Flynn Sean M.,de Bono Mario

Abstract

AbstractCalmodulin (CaM) is the major calcium ion (Ca2+) sensor in many biological processes, regulating for example the CaM kinases, calcineurin, and many ion channels. CaM levels are limiting in cells compared to its myriad targets, but how CaM levels are controlled is poorly understood. We find that CaM abundance in the C. elegans and Drosophila nervous systems is controlled by the CaM-binding transcription activator, CAMTA. C. elegans CAMTA (CAMT-1), like its fly and mammalian orthologues, is expressed widely in the nervous system. camt-1 mutants display pleiotropic behavioural defects and altered Ca2+ signaling in neurons. Using FACS-RNA Seq we profile multiple neural types in camt-1 mutants and find all exhibit reduced CaM mRNA compared to controls. Supplementing CaM levels using a transgene rescues camt-1 mutant phenotypes. Chromatin immunoprecipitation sequencing (ChIP-Seq) data show that CAMT-1 binds several sites in the calmodulin promoter. CRISPR-mediated deletion of these sites shows they redundantly regulate calmodulin expression. We also find that CaM can feed back to inhibit its own expression by a mechanism that depends on CaM binding sites on CAMT-1. This work uncovers a mechanism that can both activate and inhibit CaM expression in the nervous system, and controls Ca2+ homeostasis, neuronal excitability and behavior.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3