Staphylococcus sciuri C2865 from a distinct subspecies cluster as reservoir of the novel transferable trimethoprim resistance gene, dfrE, and adaptation driving mobile elements

Author:

Gómez-Sanz ElenaORCID,Haro-Moreno Jose Manuel,Jensen Slade O.,Roda-García Juan José,López-Pérez MarioORCID

Abstract

AbstractFour methicillin-resistant Staphylococcus sciuri (MRSS) strains isolated from stranded dogs showed trimethoprim (TMP) resistance, while all staphylococcal TMP resistant dihydrofolate reductase genes (dfr) were negative. An in-depth whole-genome-sequencing approach on strain C2865 was followed for resistome and mobilome profiling, and for comparative genomics with S. sciuri group available genomes. Lack of species host tropism was observed, with MRSS C2865 placed at a separate sub-branch within S. sciuri species, close to the average nucleotide identity to be considered a different species (95-96%). S. sciuri proved a pronounced accessory genome (73% of genes), while MRSS C2865 distinctively harboured the highest total gene number and highest number of unique genes, with 75% associated to the recognised mobilome. A novel multidrug resistance mosaic plasmid (pUR2865-34) with several adaptive, mobilization (oriT mimic) and segregational stability (Type Ib par system) traits and two small single resistance plasmids were identified. Plasmid pUR2865-34 enclosed a novel staphylococcal TMP resistance gene, named dfrE, which shared highest identity with dfr of soil-related Paenibacillus anaericanus (68%). DfrE conferred high-level TMP resistance in S. aureus and Escherichia coli. Database searches revealed that dfrE was formerly denoted (dfr_like) in an Exiguobacterium spp. from a fish-farm sediment and that was present but unnoticed in several staphylococcal and onemacrococcal genomes with different epidemiological backgrounds. Novel chromosomal site-specific mobile islands with resourceful traits were identified, including a multidrug-resistant SCCmec cassette lacking cassette chromosome recombinase (Ccr) genes, a staphylococcal pathogenicity island of the SaPI4 family, and three unrelated siphoviridae prophages, two of which enclosed recombinases with the conserved Ccr-motif. We reveal a novel staphylococcal TMP resistance dfrE gene already present in diverse bacterial backgrounds. We confirm the ubiquity, high genome plasticity and low host tropism of S. sciuri highlighting its role as a resourceful reservoir for evolutionary novel features contributing to its extraordinary versatility and adaptability.Author summaryStaphylococcus spp. are ubiquitous bacteria present in diverse ecological niches, including humans, animals and the environment. They are clinically relevant opportunistic pathogens and are notorious for their ability to acquire antimicrobial resistance (AMR) and virulence properties, resulting in a significant impact for Public Health. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information across bacterial species. Staphylococcus sciuri represents one of the most ancestral species in the genus and has been suggested a reservoir for AMR genes. Here, following a refined whole genome sequencing approach we determined the entire genome of an animal and environment-associated multidrug resistant (MDR) S. sciuri strain uncovering a novel acquired staphylococcal TMP resistance gene already spread among different bacterial species from different epidemiological backgrounds. We also reveal several additional MGEs, including a novel MDR mobilizable plasmid that encloses several adaptive and stabilization features, and novel mobilizable chromosomal islands with resourceful traits, including three unrelated prophages. Together with comparative genomics, we confirm the ubiquity, high intraspecies heterogenicity, genome plasticity and low host tropism of this species, highlighting its role as resourceful reservoir for evolutionary novel features contributing to its extraordinary versatility and adaptability.

Publisher

Cold Spring Harbor Laboratory

Reference107 articles.

1. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat

2. Coagulase-Negative Staphylococci

3. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes

4. High intraspecies heterogeneity within Staphylococcus sciuri and rejection of its classification into S. sciuri subsp. sciuri;S. sciuri subsp. carnaticus and S. sciuri subsp. rodentium. International journal of systematic and evolutionary microbiology,2016

5. Differentiation of Staphylococcus sciuri Strains Isolated from Free-Living Rodents and Insectivores

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3