OpenAWSEM with Open3SPN2: a fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations

Author:

Lu WeiORCID,Bueno CarlosORCID,Schafer Nicholas P.,Moller JoshuaORCID,Jin ShikaiORCID,Chen Xun,Chen Mingchen,Gu XinyuORCID,de Pablo Juan J.,Wolynes Peter G.ORCID

Abstract

AbstractWe present OpenAWSEM and Open3SPN2, new cross-compatible implementations of coarse-grained models for protein (AWSEM) and DNA (3SPN2) molecular dynamics simulations within the OpenMM framework. These new implementations retain the chemical accuracy and intrinsic efficiency of the original models while adding GPU acceleration and the ease of forcefield modification provided by OpenMM’s Custom Forces software framework. By utilizing GPUs, we achieve more than a 100-fold speedup in protein and protein-DNA simulations over the existing LAMMPS-based implementations running on a CPU.We showcase the benefits of OpenMM’s Custom Forces framework by devising and implementing two new potentials that allow us to address important aspects of protein folding and structure prediction and by testing the ability of the combined OpenAWSEM and Open3SPN2 to model protein-DNA binding. The first potential is used to describe the changes in effective interactions that occur as a protein becomes partially buried in a membrane. We also introduced an interaction to describe proteins with multiple disulfide bonds. Using simple pairwise disulfide bonding terms results in unphysical clustering of cysteine residues, posing a problem when simulating the folding of proteins with many cysteines. We now can computationally reproduce Anfinsen’s early Nobel prize winning experiments [1] by using OpenMM’s Custom Forces framework to introduce a multi-body disulfide bonding term that prevents unphysical clustering. Our protein-DNA simulations show that the binding landscape is funneled towards structures that are quite similar to those found using experiments.In summary, this paper provides a simulation tool for the molecular biophysics community that is both easy to use and sufficiently efficient to simulate large proteins and large protein-DNA systems that are central to many cellular processes. These codes should facilitate the interplay between molecular simulations and cellular studies, which have been hampered by the large mismatch between the time and length scales accessible to molecular simulations and those relevant to cell biology.Author summaryThe cell’s most important pieces of machinery are large complexes of proteins often along with nucleic acids. From the ribosome, to CRISPR-Cas9, to transcription factors and DNA-wrangling proteins like the SMC-Kleisins, these complexes allow organisms to replicate and enable cells to respond to environmental cues. Computer simulation is a key technology that can be used to connect physical theories with biological reality. Unfortunately, the time and length scales accessible to molecular simulation have not kept pace with our ambition to study the cell’s molecular factories. Many simulation codes also unfortunately remain effectively locked away from the user community who need to modify them as more of the underlying physics is learned. In this paper, we present OpenAWSEM and Open3SPN2, two new easy-to-use and easy to modify implementations of efficient and accurate coarse-grained protein and DNA simulation forcefields that can now be run hundreds of times faster than before, thereby making studies of large biomolecular machines more facile.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3