Rapid evaluation of neutralizing antibodies in COVID-19 patients

Author:

Zhang Pingping,Li Baisheng,Min Wei,Wang Xiaohui,Li Zhencui,Zhao Yong,Zhang Huan,Jiang Min,Zheng Huanying,Yang Chao,Zhang Wei,Zuo Le,Gao Qi,Yang Zhengrong,Li Yanzhao,Feng Tiejian,Lin Changqing,Hu Qinghua,Song Tie,Yang Ruifu

Abstract

AbstractThe ongoing coronavirus disease 2019 (COVID-19) pandemic calls for a method to rapidly and conveniently evaluate neutralizing antibody (NAb) activity in patients. Here, an up-conversion phosphor technology-based point-of-care testing (UPT-POCT) and a microneutralization assay were employed to detect total antibodies against the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and NAb activity in COVID-19 patients’ sera, respectively, in order to determine if UPT-POCT could be used as a surrogate method for rapid evaluation of serum NAb activity in COVID-19 patients. In total, 519 serum samples from 213 recovered and 99 polymerase chain reaction re-positive (RP) COVID-19 patients were used in this report. We found that UPT-POCT reporting values correlated highly with NAb titers from 1:4 to 1:1024, with a correlation coefficient r = 0.9654 (P < 0.001), as well as protection rate against RP (r = 0.9886, P < 0.0001). As a significant point for reducing re-positive rate, UPT-POCT values of 4.380 ± 2.677, corresponding to NAb titer of 1:64, may be appropriate as an indicator for evaluating high efficiency of protection. This study demonstrates that the quantitative lateral flow based UPT-POCT, could be used to rapidly evaluate NAb titer, which is of importance for assessing vaccine immunization efficacy, herd immunity, and screening patient plasma for high NAbs.

Publisher

Cold Spring Harbor Laboratory

Reference23 articles.

1. Impact of plague on human history;Infect Dis Clin North Am,2006

2. Yu J Tostanoski LH Peter L et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 2020:abc6284.

3. Herd immunity – estimating the level required to halt the COVID-19 epidemics in affected countries

4. Chandrashekar A Liu J Martinot AJ et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 2020:abc4776.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3