Abstract
AbstractSpermatogenesis, the complex developmental process of male germ cell proliferation, differentiation, and maturation, is the basis of male fertility and reproductive fitness. In the seminiferous tubules of the testes, spermatozoa are constantly generated from spermatogonial stem cells through a stereotyped sequence of mitotic and meiotic divisions. The basic physiological principles, however, that control both maturation and luminal transport of the still immotile spermatozoa within the seminiferous tubules remain poorly, if at all, defined. Here, we show that coordinated contractions of smooth muscle-like testicular peritubular cells provide the propulsive force for luminal sperm transport towards the rete testis and epididymis. Using a mouse model forin vivoimaging, we describe and quantify spontaneous tubular contractions and show a causal relationship between peritubular Ca2+waves and peristaltic transport. Moreover, we identify P2 receptor-dependent purinergic signaling pathways as physiological triggers of tubular contractions bothin vitroandin vivo. When challenged with extracellular ATP, transport of luminal content inside the seminiferous tubules displays stage-dependent directionality. We thus suggest that paracrine purinergic signaling coordinates peristaltic recurrent contractions of the mouse seminiferous tubules to propel immotile spermatozoa to the rete testis. Consequently, our findings could have substantial pharmaceutical implications for both infertility treatment and / or male contraception.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Purinergic Signaling in Spermatogenesis;Frontiers in Endocrinology;2022-04-05