Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington’s Like Disorder in Preclinical Model

Author:

Adhikari Aniruddha,Mondal Susmita,Das Monojit,Biswas Pritam,Pal UttamORCID,Darbar Soumendra,Bhattacharya Siddhartha Sankar,Pal Debasis,Saha-Dasgupta Tanusri,Das Anjan Kumar,Mallick Asim Kumar,Pal Samir Kumar

Abstract

ABSTRACTThe potentiality of nano-enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, we have shown that citrate functionalized manganese-based biocompatible nanoscale material (C-Mn3O4 NP) efficiently mimics glutathione peroxidase enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. We further established the in vivo therapeutic efficacy of C-Mn3O4 nanozyme in a preclinical animal model of Huntington’s disease, a prevalent progressive neurodegenerative disorder, which has no effective medication till date.SUMMARYAlthough, nano-enzymes have shown lots of promises in the management of several diseases, two major concerns limit their clinical translation. Apart from the inherent toxicity of the constituent materials (e.g., cerium, vanadium, gold, etc.), activities of contemporary nanozymes are often inhibited in physiological milieu. Furthermore, most of them are incapable of incorporation into the cellular metabolic networks for functioning in tandem and parallel with natural enzymes, a major criteria for potential therapeutics.Here, we have shown that citrate-functionalized spherical Mn3O4 nanoparticles can efficiently mimic glutathione peroxidase (GPX) enzyme without the limitations of contemporary nanozymes, and effectively manage neurodegenerative Huntington’s disease in preclinical animal model. The choice of the material in the nanozyme lies on the fact that Mn is an essential micronutrient for mammals, and the stabilizing ligand citrate helps the nanoparticles to cross the blood-brain-barrier to reach brain. We have shown that the nanozyme can easily be incorporated in cellular antioxidant enzyme cascade. The specificity and efficacy of the nanozyme in the cascade was significantly higher compared to other reported nanozymes. We have justified our experimental findings with a detailed computational study. Understanding the mode of operation and management of Huntington’s disease in preclinical animal trial using a biocompatible (non-toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3