Phospho-islands and the evolution of phosphorylated amino acids in mammals

Author:

Moldovan Mikhail A.,Gelfand Mikhail S.

Abstract

AbstractBackgroundProtein phosphorylation is the best studied post-translational modification strongly influencing protein function. Phosphorylated amino acids not only differ in physico-chemical properties from non-phosphorylated counterparts, but also exhibit different evolutionary patterns, tending to mutate to and originate from negatively charged amino acids. The distribution of phosphosites along protein sequences is non-uniform, as phosphosites tend to cluster, forming so-called phospho-islands.MethodsHere, we have developed an HMM-based procedure for the identification of phospho-islands and studied the properties of the obtained phosphorylation clusters. To check robustness of evolutionary analysis, we consider different models for the reconstructions of ancestral phosphorylation states.ResultsClustered phosphosites differ from individual phosphosites in several functional and evolutionary aspects including underrepresentation of phosphotyrosines, higher conservation, more frequent mutations to negatively charged amino acids. The spectrum of tissues, frequencies of specific phosphorylation contexts, and mutational patterns observed near clustered sites also are different.

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

1. 2018. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research [Internet] 47:D506–D515. Available from: http://dx.doi.org/10.1093/nar/gky1049

2. The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces;Nucleic Acids Research [Internet],2017

3. Basic local alignment search tool;Journal of Molecular Biology [Internet],1990

4. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review);International Journal of Molecular Medicine [Internet],2017

5. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes;Cell Systems [Internet],2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3