Dynamic characteristics rather than static hubs are important in biological networks

Author:

Kühlwein Silke D.ORCID,Ikonomi Nensi,Schwab Julian D.,Kraus Johann M.,Rudolph K. Lenhard,Pfister Astrid S.,Schuler Rainer,Kühl Michael,Kestler Hans A.ORCID

Abstract

AbstractBiological processes are rarely a consequence of single protein interactions but rather of complex regulatory networks. However, interaction graphs cannot adequately capture temporal changes. Among models that investigate dynamics, Boolean network models can approximate simple features of interaction graphs integrating also dynamics. Nevertheless, dynamic analyses are time-consuming and with growing number of nodes may become infeasible. Therefore, we set up a method to identify minimal sets of nodes able to determine network dynamics. This approach is able to depict dynamics without calculating exhaustively the complete network dynamics. Applying it to a variety of biological networks, we identified small sets of nodes sufficient to determine the dynamic behavior of the whole system. Further characterization of these sets showed that the majority of dynamic decision-makers were not static hubs. Our work suggests a paradigm shift unraveling a new class of nodes different from static hubs and able to determine network dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3