Chromatin State Dynamics Confers Specific Therapeutic Strategies in Enhancer Subtypes of Colorectal Cancer

Author:

Orouji Elias,Raman Ayush T.,Singh Anand K.,Sorokin Alexey,Arslan Emre,Ghosh Archit K.,Schulz Jonathan,Terranova Christopher J.,Tang Ming,Maitituoheti Mayinuer,Callahan S. Carson,Tomczak Katarzyna J.,Jiang Zhiqin,Davis Jennifer S.,Ghosh Sukhen,Lee Hey Min,Reyes-Uribe Laura,Chang Kyle,Liu Yushua,Chen Huiqin,Azhdarnia Ali,Morris Jeffrey S.,Vilar Eduardo,Carmon Kendra S.,Kopetz Scott,Rai Kunal

Abstract

ABSTRACTThe extent and function of chromatin state aberrations during colorectal cancer (CRC) progression is not completely understood. Here, by comprehensive epigenomic characterization of 56 tumors, adenomas, and their matched normal tissues, we define the dynamics of chromatin states during the progression of colorectal cancer. H3K27ac-marked active enhancer state could distinguish between different stages of CRC progression. By epigenomic editing, we present evidence that gains of tumor-specific enhancers for crucial oncogenes, such as ASCL2 and FZD10, was crucial for excessive proliferation. Consistently, combination of MEK plus bromodomain (BET) inhibition was found to have synergistic effects in CRC patient-derived xenograft (PDX) models. Probing inter-tumor heterogeneity, we identified four distinct enhancer subtypes (EpiC), three of which correlate well with previously defined transcriptomic subtypes (CMSs). Importantly, CMS2 can be divided into two EpiC subgroups with significant survival differences. Leveraging such correlation, we devised a combinatorial therapeutic strategy of enhancer-blocking bromodomain inhibitors with pathway-specific inhibitors (PARPi, EGFRi, and TGFβi) for three EPIC groups. Our data suggest that the dynamics of active enhancer underlies colorectal cancer progression and the patient-specific active enhancer patterns govern their unique gene expression patterns which can be leveraged for precision combination therapy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3