A lysophospholipase plays role in generation of neutral-lipids required for hemozoin formation in malaria parasite

Author:

Asad Mohd,Yamaryo-Botté Yoshiki,Hossain Mohammad E.,Thakur Vandana,Jain Shaifali,Datta Gaurav,Botté Cyrille Y.,Mohmmed AsifORCID

Abstract

AbstractPhospholipid metabolism is crucial for membrane dynamics in malaria parasites during entire cycle in the host cell. Plasmodium falciparum harbours several members of phospholipase family, which play key role in phospholipid metabolism. Here we have functionally characterized a parasite lysophospholipase (PfLPL1) with a view to understand its role in lipid homeostasis. We used a regulated fluorescence affinity tagging, which allowed endogenous localization and transient knock-down of the protein. PffLPL1localizes to dynamic vesicular structures that traffic from parasite periphery, through the cytosol to get associated as a multi-vesicular neutral lipid rich body next to the food-vacuole during blood stages. Down-regulation of the PfLPL1 disrupted parasite lipid-homeostasis leading to significant reduction of neutral lipids in lipid-bodies. This hindered conversion of heme to hemozoin, leading to food-vacuole abnormalities, which in turn disrupted parasite development cycle and significantly inhibited parasite growth. Detailed lipidomic analyses of inducible knock-down parasites confirmed role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Our study thus suggests a specific role of PfLPL1 to generate neutral lipids in the parasite, which are essential for parasite survival.ImportancePresent study was undertaken with a view to understand the functional role of a unique lipase (lysophopholipase, PfLPL1) of the human malaria parasite. We utilized genetic approaches for GFP tagging as well as to knock-down the target protein in the parasite. Our studies showed that PfLPL1 associates closely with the lysosome like organelle in the parasite, the food-vacuole. During the blood stage parasite cycle, the food-vacuole is involved in degradation of host haemoglobin and conversion of heme to hemozoin. Genetic knock-down approaches and detailed lipidomic studies confirmed that PfLPL1 protein plays key role in generation of neutral lipid stores in the parasite; neutral lipids are essentially required for hemozoin formation in the parasite, a vital function of the food-vacuole. Overall, this study identified specific role of PfLPL1 in the parasite which is essential for parasite survival.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3