Fast and accurate reference-guided scaffolding of draft genomes

Author:

Alonge Michael,Soyk Sebastian,Ramakrishnan Srividya,Wang Xingang,Goodwin Sara,Sedlazeck Fritz J.,Lippman Zachary B,Schatz Michael C.

Abstract

AbstractBackgroundAs the number of new genome assemblies continues to grow, there is increasing demand for methods to coalesce contigs from draft assemblies into pseudomolecules. Most current methods use genetic maps, optical maps, chromatin conformation (Hi-C), or other long-range linking data, however these data are expensive and analysis methods often fail to accurately order and orient a high percentage of assembly contigs. Other approaches utilize alignments to a reference genome for ordering and orienting, however these tools rely on slow aligners and are not robust to repetitive contigs.ResultsWe present RaGOO, an open-source reference-guided contig ordering and orienting tool that leverages the speed and sensitivity of Minimap2 to accurately achieve chromosome-scale assemblies in just minutes. With the pseudomolecules constructed, RaGOO identifies structural variants, including those spanning sequencing gaps that are not reported by alternative methods. We show that RaGOO accurately orders and orients contigs into nearly complete chromosomes based on de novo assemblies of Oxford Nanopore long-read sequencing from three wild and domesticated tomato genotypes, including the widely used M82 reference cultivar. We then demonstrate the scalability and utility of RaGOO with a pan-genome analysis of 103 Arabidopsis thaliana accessions by examining the structural variants detected in the newly assembled pseudomolecules. RaGOO is available open-source with an MIT license at https://github.com/malonge/RaGOO.ConclusionsWe demonstrate that with a highly contiguous assembly and a structurally accurate reference genome, reference-guided scaffolding with RaGOO outperforms error-prone reference-free methods and enable rapid pan-genome analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3