Plasticity in Escherichia coli cell wall metabolism promotes fitness and mediates intrinsic antibiotic resistance across environmental conditions

Author:

Mueller Elizabeth AORCID,Levin Petra Anne

Abstract

ABSTRACTAlthough the peptidoglycan cell wall is an essential structural and morphological feature of most bacterial cells, the extracytoplasmic enzymes involved in its synthesis are frequently dispensable under standard culture conditions. By modulating a single growth parameter—extracellular pH—we discovered a subset of these so-called “redundant” enzymes in Escherichia coli are required for maximal fitness across pH environments. Among these pH specialists are the class A penicillin binding proteins PBP1 a and PBP1 b; defects in these enzymes attenuate growth in alkaline and acidic conditions, respectively. Genetic, biochemical, and cytological studies demonstrate that synthase activity is required for cell wall integrity across a wide pH range, and differential activity across pH environments significantly alters intrinsic resistance to cell wall active antibiotics. Together, our findings reveal previously thought to be redundant enzymes are instead specialized for distinct environmental niches, thereby ensuring robust growth and cell wall integrity in a wide range of conditions.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Ingraham JL. Effect of temperature, pressure, Ph, and osmotic stress on growth. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbilolgy; 1992;:1570–8.

2. Structural and functional properties of porin channels in E. coli outer membranes;Experientia.,1990

3. pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate.

4. pH of the Cytoplasm and Periplasm of Escherichia coli : Rapid Measurement by Green Fluorescent Protein Fluorimetry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3