Schistosoma mansoni does not and cannot oxidize fatty acids, but these are used for biosynthetic purposes instead

Author:

Bexkens Michiel L.,Mebius Mirjam M.,Houweling Martin,Brouwers Jos F.,Tielens Aloysius G.M.,van Hellemond Jaap J.

Abstract

AbstractAdult schistosomes, parasitic flatworms that cause the tropical disease schistosomiasis, have always been considered to be homolactic fermenters and in their energy metabolism strictly dependent on carbohydrates. However, more recent studies suggested that fatty acid β-oxidation is essential for egg production by adult female Schistosoma mansoni. To address this conundrum, we performed a comprehensive study on the lipid metabolism of S. mansoni. Incubations with [14C]-labelled fatty acids demonstrated that adults, eggs and miracidia of S. mansoni did not oxidize fatty acids, as no 14CO2 production could be detected. We then re-examined the S. mansoni genome using the genes known to be involved in fatty acid oxidation in six eukaryotic model reference species. This showed that the earlier automatically annotated genes for fatty acid oxidation were in fact incorrectly annotated. In a further analysis we could not detect any genes encoding β-oxidation enzymes, which demonstrates that S. mansoni cannot use this pathway in any of its lifecycle stages. The same was true for S. japonicum. Absence of β-oxidation, however, does not imply that fatty acids from the host are not metabolized by schistosomes. Adult schistosomes can use and modify fatty acids from their host for biosynthetic purposes and incorporate them in phospholipids and neutral lipids. Female worms deposit large amounts of these lipids in the eggs they produce, which explains why interference with the lipid metabolism in females will disturb egg formation, even though fatty acid β-oxidation does not occur in schistosomes. Our analyses of S. mansoni further revealed that during the development and maturation of the miracidium inside the egg, changes in lipid composition occur which indicates that fatty acids deposited in the egg by the female worm are used for phospholipid biosynthesis required for membrane formation in the developing miracidium.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3