Comparative analyses of parasites with a comprehensive database of genome-scale metabolic models

Author:

Carey Maureen A.ORCID,Medlock Gregory L.ORCID,Stolarczyk Michał,Petri William A.,Guler Jennifer L.ORCID,Papin Jason A.ORCID

Abstract

AbstractProtozoan parasites cause diverse diseases with large global impacts. Research on the pathogenesis and biology of these organisms is limited by economic and experimental constraints. Accordingly, studies of one parasite are frequently extrapolated to infer knowledge about another parasite, across and within genera. Modelin vitroorin vivosystems are frequently used to enhance experimental manipulability, but these systems generally use species related to, yet distinct from, the clinically relevant causal pathogen. Characterization of functional differences among parasite species is confined topost hocor single target studies, limiting the utility of this extrapolation approach. To address this challenge and to accelerate parasitology research broadly, we present a functional comparative analysis of 192 genomes, representing every high-quality, publicly-available protozoan parasite genome includingPlasmodium, Toxoplasma, Cryptosporidium, Entamoeba, Trypanosoma, Leishmania, Giardia, and other species. We generated an automated metabolic network reconstruction pipeline optimized for eukaryotic organisms. These metabolic network reconstructions serve as biochemical knowledgebases for each parasite, enabling qualitative and quantitative comparisons of metabolic behavior across parasites. We identified putative differences in gene essentiality and pathway utilization to facilitate the comparison of experimental findings. This knowledgebase represents the largest collection of genome-scale metabolic models for both pathogens and eukaryotes; with this resource, we can predict species-specific functions, contextualize experimental results, and optimize selection of experimental systems for fastidious species.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3