Length-dependent disassembly maintains four different flagellar lengths in Giardia

Author:

McInally SGORCID,Kondev J,Dawson Scott C.

Abstract

AbstractHow flagellar length regulation is achieved in multiciliated eukaryotic cells with flagella of different equilibrium lengths is unknown. The protist Giardia lamblia is an ideal model to evaluate length regulation as it has flagella of four different lengths. Giardia axonemes have both non-membrane-bound and membrane-bound regions, but lack transition zones. Here we quantified the contributions of intraflagellar transport (IFT)-mediated assembly and kinesin-13-mediated disassembly to length control. IFT particles assemble and inject at Giardia’s flagellar pore complexes, which act as diffusion barriers functionally analogous to the transition zone to compartmentalize the membrane-bound regions of flagella. IFT-mediated assembly is length-independent as train size, speed, and injection frequencies are similar between flagella of different lengths. In Giardia, kinesin-13 mediates a length-dependent disassembly mechanism of length regulation to balance length-independent IFT-mediated assembly, resulting in different lengths. We anticipate that similar control mechanisms are widespread in multiciliated cells where cytoplasmic precursor pools are not limiting.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3