Substantial genetic mixing among sexual and androgenetic lineages within the clam genus Corbicula

Author:

Vastrade M.ORCID,Etoundi E.,Bournonville T.,Colinet M.,Debortoli N.,Hedtke S.M.,Nicolas E.,Pigneur L.-M.,Virgo J.,Flot J.-F.,Marescaux J.,Van Doninck K.

Abstract

Abstract“Occasional” sexuality occurs when a species combines clonal reproduction and genetic mixing. This strategy is predicted to combine the advantages of both asexuality and sexuality, but its actual consequences on the genetic diversity and species longevity are poorly understood. Androgenesis, a reproductive mode in which the offspring inherits its entire nuclear genome from the father, is often reported as a strictly clonal reproductive mode. Androgenesis is the predominant reproductive mode within the hermaphroditic, invasive lineages of the mollusk genus Corbicula. Their ability to reproduce clonally through androgenesis has been determinant in their invasive success, having colonized during the 20th century American and European freshwater systems, where they became notorious invaders with a widespread, global distribution. However, in androgenetic Corbicula clams, occasional genetic mixing between distinct lineages has also been observed when the sperm of one lineage fertilizes the oocyte of another one. Because of these occasional introgressions, the genetic relationships between Corbicula species remained unclear, and the biogeographic origins of the invasive androgenetic lineages have been challenging to identify. To address these issues, we analyzed the patterns of allele sharing for several nuclear and mitochondrial molecular markers among Corbicula individuals collected across both the native and invasive range. Our results show the occurrence of an allelic pool encompassing all Corbicula freshwater species worldwide, including sexual and androgenetic ones, which highlights the substantial genetic mixing within this genus. However, the differences in allele sharing patterns between invasive lineages, and the low diversity within each lineage, suggest recent, distinct biogeographic origins of invasive Corbicula androgenetic lineages. Finally, the polyploidy, high heterozygosity, and hybrid phenotypes and genotypes found in our study probably originated from hybridization events following egg parasitism between distinct Corbicula lineages. This extensive cross-lineage mixing found in Corbicula may generate nuclear diversity in an otherwise asexually reproducing species.

Publisher

Cold Spring Harbor Laboratory

Reference120 articles.

1. A new look at the statistical model identification;IEEE Trans. Automat. Contr,1974

2. The Asiatic clam Corbicula fluminea (Müller, 1974) (Bivalvia: Corbiculidae) in Europe;American Malacological Bulletin.,1993

3. Bah, T . 2011. Inkscape. Guide to a vector drawing program. 4th edition. Prentice Hall.

4. Median-joining networks for inferring intraspecific phylogenies

5. Population dynamics with a mixed type of sexual and asexual reproduction in a fluctuating environment;BMC Evolutionary Biology,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3