Defined factors to reactivate cell cycle activity in adult mouse cardiomyocytes

Author:

Judd Justin,Lovas Jonathan,Huang Guo N.

Abstract

ABSTRACTAdult mammalian cardiomyocytes exit the cell cycle during the neonatal period, commensurate with the loss of regenerative capacity in adult mammalian hearts. We established conditions for long-term culture of adult mouse cardiomyocytes that are genetically labeled with fluorescence. This technique permits reliable analyses of proliferation of pre-existing cardiomyocytes without complications from cardiomyocyte marker expression loss due to dedifferentiation or significant contribution from cardiac progenitor cell expansion and differentiation in culture. Using this system, we took a candidate gene approach to screen for fetal-specific proliferative gene programs that can induce proliferation of adult mouse cardiomyocytes. Using pooled gene delivery and subtractive gene elimination, we identified a novel functional interaction between E2f Transcription Factor 2 (E2f2) and Brain Expressed X-Linked (Bex)/Transcription elongation factor A-like (Tceal) superfamily members Bex1 and Tceal8. Specifically, Bex1 and Tceal8 both preserved cell viability during E2f2-induced cell cycle re-entry. Although Tceal8 inhibited E2f2-induced S-phase re-entry, Bex1 facilitated DNA synthesis while inhibiting cell death. In sum, our study provides a valuable method for adult cardiomyocyte proliferation research and suggests that Bex family proteins may function in modulating cell proliferation and death decisions during cardiomyocyte development and maturation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3