Author:
Bulik-Sullivan Brendan,Finucane Hilary K,Anttila Verneri,Gusev Alexander,Day Felix R,Consortium ReproGen,Genomics Consortium Psychiatric,Wellcome Trust Consortium Anorexia Nervosa Genetic Consortium,Duncan Laramie,Perry John R.B.,Patterson Nick,Robinson Elise,Daly Mark J,Price Alkes L,Neale Benjamin M
Abstract
Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use our method to estimate 300 genetic correlations among 25 traits, totaling more than 1.5 million unique phenotype measurements. Our results include genetic correlations between anorexia nervosa and schizophrenia/ body mass index and associations between educational attainment and several diseases. These results highlight the power of a polygenic modeling framework, since there currently are no genome-wide significant SNPs for anorexia nervosa and only three for educational attainment.
Publisher
Cold Spring Harbor Laboratory
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献