Author:
Sbierski-Kind Julia,Mai Knut,Kath Jonas,Jurisch Anke,Streitz Mathias,Kuchenbecker Leon,Jürchott Karsten,Spranger Leonard,von Schwartzenberg Reiner Jumpertz,Decker Anne-Marie,Krüger Ulrike,Volk Hans-Dieter,Spranger Joachim
Abstract
AbstractObesity is a growing global health problem due to its association with chronic low-grade inflammation contributing to metabolic complications. Multiple studies indicate that white adipose tissue (WAT) inflammation can promote type 2 diabetes. However, the function and regulation of both innate and adaptive immune cells in human WAT under conditions of obesity and calorie restriction (CR) is not fully understood yet. Using a randomized interventional design, we investigated postmenopausal obese women who either underwent CR for three months followed by a 4 weeks phase of weight maintenance or had to maintain a stable weight over the whole study period. A comprehensive immune phenotyping protocol was conducted using validated multiparameter flow cytometry analysis in blood and subcutaneous WAT (SAT) (n=21). The T cell receptor repertoire was analyzed by next generation sequencing (n=20) and cytokine levels were determined in SAT (n=22). Metabolic parameters were determined by hyperinsulinemic-euglycemic clamp and then correlated to immune cell subsets. We found that insulin resistance (IR) correlates significantly with a shift towards the memory T cell compartment in SAT. Among various T cell subsets, predominantly CD8+ effector memory T cells were associated with obesity-related IR. Interestingly, T cell receptor analysis revealed a diverse repertoire in SAT arguing against an antigen-driven intra-SAT expansion of effector memory T cells. Surprisingly, neither inflammatory cytokine levels nor leucocyte subpopulations were significantly altered upon CR. Our findings demonstrate the accumulation of effector memory T cells in obese SAT contributing to chronic inflammation. The long-standing effect of obesity-induced changes in SAT was demonstrated by preserved immune cell composition after short-term CR induced weight loss.
Publisher
Cold Spring Harbor Laboratory