chewBBACA: A complete suite for gene-by-gene schema creation and strain identification

Author:

Silva Mickael,Machado Miguel,Silva Diogo N.,Rossi Mirko,Moran-Gilad Jacob,Santos Sergio,Ramirez Mario,Carriço João André

Abstract

ABSTRACTGene-by-gene approaches are becoming increasingly popular in bacterial genomic epidemiology and outbreak detection. However, there is a lack of open-source scalable software for schema definition and allele calling for these methodologies. The chewBBACA suite was designed to assist users in the creation and evaluation of novel whole-genome or core-genome gene-by-gene typing schemas and subsequent allele calling in bacterial strains of interest. The software can run in a laptop or in high performance clusters making it useful for both small laboratories and large reference centers. ChewBBACA is available athttps://github.com/B-UMMI/chewBBACAor as a docker image athttps://hub.docker.com/r/ummidock/chewbbaca/.DATA SUMMARYAssembled genomes used for the tutorial were downloaded from NCBI in August 2016 by selecting those submitted asStreptococcus agalactiaetaxon or sub-taxa. All the assemblies have been deposited as a zip file in FigShare (https://figshare.com/s/9cbe1d422805db54cd52), where a file with the original ftp link for each NCBI directory is also available.Code for the chewBBACA suite is available athttps://github.com/B-UMMI/chewBBACAwhile the tutorial example is found athttps://github.com/B-UMMI/chewBBACA_tutorial.I/We confirm all supporting data, code and protocols have been provided within the article or through supplementary data files. ⊠IMPACT STATEMENTThe chewBBACA software offers a computational solution for the creation, evaluation and use of whole genome (wg) and core genome (cg) multilocus sequence typing (MLST) schemas. It allows researchers to develop wg/cgMLST schemes for any bacterial species from a set of genomes of interest. The alleles identified by chewBBACA correspond to potential coding sequences, possibly offering insights into the correspondence between the genetic variability identified and phenotypic variability. The software performs allele calling in a matter of seconds to minutes per strain in a laptop but is easily scalable for the analysis of large datasets of hundreds of thousands of strains using multiprocessing options. The chewBBACA software thus provides an efficient and freely available open source solution for gene-by-gene methods. Moreover, the ability to perform these tasks locally is desirable when the submission of raw data to a central repository or web services is hindered by data protection policies or ethical or legal concerns.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3