High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns

Author:

Owen Lucy L. W.,Chang Thomas H.,Manning Jeremy R.ORCID

Abstract

AbstractOur thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain’s functional connectome that display homologous lower-level dynamic correlations. We tested the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We developed an approach to estimating high-order dynamic correlations in timeseries data, and we applied the approach to neuroimaging data collected as human participants either listened to a ten-minute story or listened to a temporally scrambled version of the story. We trained across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We found that classifiers trained to decode from high-order dynamic correlations yielded the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain.

Publisher

Cold Spring Harbor Laboratory

Reference90 articles.

1. Tracking Whole-Brain Connectivity Dynamics in the Resting State

2. Alvarez-Hamelin, I. , Dall’Asta, L. , Barrat, A. , & Vespignani, A. (2005). k-corr decomposition: a tool for the visualiztion of large scale networks. arXiv, cs/0504107v2.

3. Discovering event structure in continuous narrative perception and memory;Neuron,2017

4. Betweenness centrality in large complex networks;European Physical Journal B,2004

5. Adaptive reconfiguration of fractal small-world human brain functional networks

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3