Molecular dynamics simulations and linear response theories jointly describe biphasic responses of myoglobin relaxation and reveal evolutionarily conserved frequent communicators

Author:

Huang Bang-Chieh,Yang Lee-Wei

Abstract

AbstractIn this study, we provide a time-dependent (td-) mechanical model, taking advantage of molecular dynamics (MD) simulations, quasiharmonic analysis of MD trajectories and td-linear response theories (td-LRT) to describe vibrational energy redistribution within the protein matrix. The theoretical description explains the observed biphasic responses of specific residues in myoglobin to CO-photolysis and photoexcitation on heme. The fast responses are found triggered by impulsive forces and propagated mainly by principal modes <40 cm-1. The predicted fast responses for individual atoms are then used to study signal propagation within protein matrix and signals are found to propagate ∼ 8 times faster across helices (4076 m/s) than within the helices, suggesting the importance of tertiary packing in proteins’ sensitivity to external perturbations. We further develop a method to integrate multiple intramolecular signal pathways and discover frequent “communicators”. These communicators are found evolutionarily conserved including those distant from the heme.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3