Digital morphometry of tumor nuclei correlates to BAP-1 status, monosomy 3, gene expression class and survival in uveal melanoma

Author:

Herrspiegel Christina,O. See Thonnie Rose,Mendoza Pia R.,Grossniklaus Hans E.,Stålhammar GustavORCID

Abstract

ABSTRACTCytologic features such as the shape and size of tumor cells can predict metastatic death in uveal melanoma and other cancers but suffer from poor reproducibility. In this study, we investigate the interobserver concordance of digital morphometry, and correlate the results with BRCA associated protein-1 (BAP-1) expression and BAP-1 gene mutation status, monosomy 3, gene expression classifications and patient survival in uveal melanoma. The average number of cells analyzed in each of 107 tumors, was 1957 (SD 349). Mean time consumption was less than 2.5 minutes per tumor. Identical morphometric classification was obtained for ≥ 85 % of tumors in all twelve evaluated morphometric variables (κ 0.70–0.93). The mean nucleus area, nucleus perimeter, nucleus max caliper and nucleus to cell area ratio were significantly greater in tumors with low BAP-1 expression and gene expression class 2. Patients had significantly shorter survival if their tumors had low BAP-1 (Log-Rank p=0.002), gene expression class 2 (p=0.004), long nucleus perimeters (p=0.031), long nucleus max calipers (p=0.029) and high mean nucleus to cell area ratios (p=0.041) as defined in a training cohort and then tested in a validation cohort. In the validation cohort, long nucleus perimeters and long nucleus max calipers correlated with monosomy 3 (Pearson Chi-Square p=0.006 and p=0.009, respectively). Long nucleus perimeters also correlated with BAP-1 mutation (p=0.017). We conclude that digital morphometry can be fast and highly reproducible, that for the first time, morphometry parameters can be objectively quantitated in thousands of cells at a time in sub-μm resolutions, and that variables describing the shape and size tumor nuclei correlate to BAP-1 status, monosomy 3, gene expression class as well as patient survival.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3